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The hierarchy of moments of the Boltzmann equation for a binary mixture of 
mechanically different Maxwell molecules is exactly solved. The solution 
corresponds to a nonequilibrium homogeneous steady state generated by an 
external force that accelerates particles of each species (or "color") along 
opposite directions. As a consequence, macroscopic fluxes are induced in spite 
of the absence of concentration gradients. Explicit expressions for the fluxes of 
mass and momentum as functions of the field strength, the mass ratio, the molar 
fractions, and the interaction constant ratio are obtained. In particular, the 
color conductivity coefficient reduces to the mutual diffusion coefficient in 
the zero-field limit. Some physically interesting limiting cases are discussed. The 
maximum-entropy method is used to construct an approximate velocity dis- 
tribution function from the exact knowledge of the mass and momentum fluxes. 
This distribution is exact up to second order in the color field and also in the 
limit of large color field. 

KEY WORDS: Boltzmann equation; Maxwell molecules; nonlinear trans- 
port; mutual diffusion. 

1. INTRODUCTION 

The  B o l t z m a n n  e q u a t i o n  p rov ides  the a p p r o p r i a t e  f r a m e w o r k  for ana lyz ing  

n o n e q u i l i b r i u m  states in di lute  gases. Never the less ,  due  to its m a t h e m a t i c a l  

intr icacy,  only  a few exac t  so lu t ions  are  known.  The  difficulties are  m u c h  

grea ter  when  the system is cons t i tu ted  by par t ic les  of  different  species, as 

one  has to dea l  wi th  a set of  coup led  B o l t z m a n n  equa t ions .  Fur the r ,  the 

t r anspor t  p roper t i es  d e p e n d  on  the m o l a r  f ract ions,  the mass  rat ios,  and  

the size rat ios.  In  o rde r  to get  expl ici t  results,  one  usual ly  has to cons ider  
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limit cases, such as the tracer limit, the Fokker-Planck limit, or the case 
of mechanically identical particles. 

The aim of this paper is to obtain an exact solution of the set of 
Boltzmann equations for a binary mixture of mechanically distinguishable 
particles. Particles of different species are understood to possess different 
"color charges," so that particles of different color can be distinguished 
even in the limit of mechanically identical particles. The system is driven 
out of equilibrium by the action of a constant external force. This color 
force acts on particles of each color along opposite directions, producing 
mutual diffusion in the absence of concentration gradients. In fact, the 
color force plays the role of a chemical potential gradient. A drag force 
is also introduced to achieve a steady state. In this problem, the ratio 
between the mass flux and the color force defines the most relevant 
transport coefficient, which will be referred to as the color conductivity 
coefficient. This coefficient reduces to the conventional mutual diffusion 
coefficient in the zero-field limit. This way of measuring the diffusion coef- 
ficient was the original motivation for introducing the color field method in 
molecular dynamics simulationsJ ~ 3~ 

The exact solution reported here is obtained by recursively solving the 
moment hierarchy for the special case of Maxwell molecules (i.e., particles 
interacting via the inverse fifth power force). We derive explicit expressions 
for the moments corresponding to the mass and momentum fluxes. These 
expressions extend previous results obtained in the case of mechanically 
identical particles (i.e., equal masses and force constants), t41 Quite sur- 
prisingly, when one conveniently nondimensionalizes the field strength and 
the color conductivity coefficient, the latter is a nonlinear "universal" func- 
tion, in the sense that it is independent of the parameters characterizing the 
mixture. On the other hand, the pressure tensor happens to be a function 
of the field strength that parametrically depends on the ratios of masses, 
molar fractions, and force constants. In particular, the trace of the pressure 
tensor gives the temperature, which is different for each species. 

The organization of the paper is as follows. Section 2 concerns with 
the description of the color conductivity problem in a binary mixture. It is 
shown that the set of Boltzmann equations can be solved by the moment 
method for Maxwell molecules. The explicit calculation of the mass and 
momentum fluxes is carried out in Section 3. Some physically interesting 
limiting cases are discussed in Section 4. The maximum-entropy method is 
used in Section 5 to get an approximate expression for the velocity distribu- 
tion functions from the knowledge of the exact mass and momentum fluxes. 
Section 6 offers a brief discussion of the results. 
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2. DESCRIPTION OF THE PROBLEM 

Usually, mutual diffusion in a binary mixture takes place when con- 
centration gradients are present. The phenomenological law linking the 
mass flux Jr of species r to the gradient of molar fraction Vxr is (51 

-) 

m l m 2 n -  
Jr- - - D V x ,  r = l , 2  (I)  

P 

where mr is the mass of a particle of species r, n=n~+n2 is the total 
number density, nr being the number density of species r, p = P l  + P2 = 
mln~ +m2n2 is the total mass density, and xr=nJn is the molar fraction 
of species r. The above relation defines the mutual diffusion coefficient D. 

In the homogeneous color conductivity problem, an external force 
accelerates particles of different species (color) along opposite directions/ ') 
Consequently, mass fluxes are created in the absence of concentration 
gradients. The color force acting on particles of species r is constant and 
can be conveniently written as 

F , =  -ksTer (2) 

where ka is the Boltzmann constant, T is the temperature of the mixture, 
and er is a constant vector that mimics the role played by Vln nr in a 
typical diffusion problem. The color force does work on the system. To 
reach a steady state, a drag force F dr~ must be introduced to compensate 
for the increase of temperature. It is given by 

d r a g  _ _  F~ - -CCmrV (3) 

ct is a thermostat parameter, identical for all the particles. Its value is deter- 
mined as a function of the color field strength by consistency. 

In the general problem, the hydrodynamic balance equations are 

0 
~7 p, + V ' j , = O ,  r =  1, 2 (4) 
ol 

0 
-~j  + V .  P+kaT(nlel + n2E2) + ~j = 0 (5) 
ot 

0 ( J~ +~;2" J2 +3net) =0 (6) OtPe+V"q+kBT el'm---~l m2 

where j =j~ +J2 is the total mass flux, P is the total momentum flux, pe is 
the total energy density, and q is the total energy flux, all of them measured 
in the laboratory frame. Now, we consider a steady, spatially homogeneous 
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state. If, without loss of generality, we take j =0,  Eqs. (5) and (6) yield the 
constraints 

nl~2 + n 2 e 2 = 0  (7) 

P P 
~=  - - ~ , ' J , =  - - e 2 " J 2  (8) 3nm i P2 3nm2p z 

In this special state, the field strength El (or 8z) represents the parameter 
measuring the distance from equilibrium. Near equilibrium, a linear law 
similar to Fick's law, Eq. (1), is expected to hold. Beyond this limit, a 
nonlinear color conductivity coefficient cr can be defined by 

Jr mlm2/l = - - ~ r n , e , ,  r = 1, 2 (9) 
P 

In general, the transport coefficient a is a function of the field strength 
er. In accordance with the original spirit of the color field method, the 
color conductivity a must reduce to the mutual diffusion coefficient D in 
the zero-field limit. Here, our goal is to go beyond the above limit and 
obtain the full dependence of a on the color field. 

In order to attack the problem, we will restrict ourselves to a low- 
density binary mixture. In that case, the adequate description is given by 
the set of two coupled Boltzmann equations, t6~ In our problem, they read 

1 0 
rn--'~lO- ~" [(Fx + F~*a~)f,] =J,~[f~,f~] +J~2[f~,f2] (10) 

1 0 
m2Ov [(F2+F~rag)f2]=J22[f2,f2]+S2,[f2,fl ] (11) 

where we have particularized to stationary, spatially homogeneous solu- 
tions. In Eqs. (10) and (11), fr(V) is the one-particle velocity distribution 
function of species r and J,.:,[f,., fs] is the Boltzmann collision term, which 
in standard notation is given by (6) 

J,,.[f,,f,] = f dv, f dO IV--VII O'rs(V--V,, 0) 

• [ L ( v ' ) L ( v ' ~ ) - L ( v ) L ( v , ) ]  (12) 

In terms of f r ,  the number density and the mass flux are given by 

nr=I dv f~ (13) 

j , .=f dvm,.vf,. (14) 
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In addition, the pressure tensor of species r can be defined as 

Pr=f dv mrVVfr (15) 

The temperature 7', is introduced through the relation 

p,=n,ksT, (16) 

where p, = -~Tr P,. From a hydrodynamic point of view, the relevant quan- 
tities are the total pressure tensor P = P~ + P2 and the temperature of the 
mixture T=x~T~ +x2T2. At a kintic level, however, there are two dis- 
tribution functions and this justifies the convenience of introducing the 
partial quantities P, and T,. The first one measures the contribution to the 
total momentum flux associated with each species, while T, measures the 
degree of unequal partition of the total energy between both species. 

A general solution, valid for arbitrary interaction potentials, to the set 
of equations (10) and (11) could be obtained as a perturbation expansion 
in powers of the field strength, in the same spirit as in the well-known 
Chapman-Enskog method/6) However, its applicability is restricted to 
states near equilibrium. Furthermore, a perturbation solution is not 
necessary if one considers the special case of Maxwell molecules (particles 
interacting via the potential f p r s = l c , s r - 4 ) .  For  this interaction, the 
Boltzmann equations (10) and (11) are solvable by means of the moment 
method. The key point is that a moment of order k of the collision 
operator only involves moments of order less than or equal to k. In 
particular, ~7~ 

f dv mrYJ,srfr, fs] = - -  Ar~s (P,j,- P,Js) (17) 
, /  rnrm s 

-- (OrPs + o,P,)+ (j,js't-jsJr)] 

~trs 

where 

m,ms -~1/2 (19) 
2r, = 1 . 6 9 ~  r , ,  m,  + m j  
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and 

f mrms "~ 1/2 
2'~ = 2 . 6 1 n / G s - - -  J 

\ m~ + ms] 
(20) 

As shown in the next section, the use of these equations allows one to 
obtain explicitly the mass and momentum fluxes for arbitrarily large values 
of the field strength. 

3. M A S S  A N D  M O M E N T U M  FLUXES 

In the following, we will focus on the transport properties associated 
with species 1. Obviously, the transport properties of species 2 can be 
obtained just by the adequate change of indices. This is a direct conse- 
quence of the fact that the results derived in this paper apply to arbitrary 
ratios of masses, concentrations, and force constants. Multiplying both 
sides of Eq. (10) by mlv and integrating, one gets 

21., 
kBTnt~ +~Jl = - - - P J ~  (21) 

mlm2 

where use has been made of Eq. (17). Inserting Eq. (8) into Eq. (21), we 
obtain a quadratic equation for j~. Its physical solution can be recast into 
the form (9) with the following expression for the color conductivity coef- 
ficient: 

__32'2n2p _,[(e,_ l+4m~rn2n'kBTe~)l/2 ] ~  - 1  (22) 
a = 2ml m2nl 32~2n2np 

Equation (22) provides the exact explicit expression for the color conduc- 
tivity coefficient for arbitrary values of the field strength el, the masses mj 
and m 2, the densities n~ and nz, and the force constant •tz. The above 
expression represents the main result of this paper. Since the color conduc- 
tivity a is independent of the species considered, as assumed in Eq. (9), it 
does not depend on x~ and x22. If we take the limit x~2--* 0, i.e., we ignore 
cross-collisions, the mass flux must be the same as in a collisionless gas, 
namely 

Jr = prUlr im (23)  

where 

u~m= kBT 
- - -  G ( 2 4 )  

~mr 
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is the limit velocity, which is obtained when the drag force equals the color 
force. Obviously, the mean kinetic energy is ~_mr,u r t  ~ ~m~2, = 3kBTr. The 
constraint T =  x~ T~ +x2 T2 allows one to get ct. Substitution into Eq. (24) 
yields 

Ullim = __ (3ka%'/2(x2nm2~ '/2A~,, 
\ ml/ \xt p / 

(25) 

As a matter of fact, this result coincides with that obtained from Eqs. (9) 
and (22) by taking the limit x12 ~ 0. 

Now we return to the nontrivial situation when x12-r In the 
zero-field limit, the color conductivity coefficient becomes 

kBT 
lim cr = (26) 

a 1 4 0  /112/'/ 

As expected, this limit coincides with the expression for the mutual diffu- 
sion coefficient D of a binary mixture of Maxwell molecules, t6~ This equiv- 
alence between D and the zero-field limit of a has been verified in 
molecular dynamics simulations for dense fluids. 11'3'81 

In order to analyze the nonlinear transport properties in the system, 
it is convenient to introduce dimensionless quantities. We define the 
reduced color conductivity coefficient tr*=a/D and the reduced field 
strength 

2~2n p El (27) 

In these units, Eq. (22) becomes 

a*(e*) = e*-2[(1 + 2e'2) I/2 - 1 ] (28) 

Written in reduced units, the field strength dependence of the color con- 
ductivity adopts a universal form, regardless of the values of the mass and 
concentration ratios. Consequently, Eq. (28) is exactly the same as the one 
derived in ref. 4 in the particular case of mechanically identical particles. 
The expansion of" a* in powers of e* is convergent for • , 2 <  1/2. In the 
large-field limit, tr* ~ x / ~  I~*J - t ,  so that the mass flux is again given by 
Eq. (23). 

Let us now get the next moment, namely the pressure tensor. Multi- 
plying both sides of Eq. (10) by m, vv and integrating, one obtains 
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. o  , 2) ] kB T (~,Jl + J~ et) + z~t'l = ..-7~ P l P ~ - - ~ J l  J--PIP1 + j l j j  
ml ml 

+ (ml+m2) m I PlP2+P2PI--~Jt'J2 

- (P,P2+P2PI)+(j,j2+j2J,)] 

- m l  - -  P2) 21" [2(~--2P2P, p 1 
(ml +m2)mt  

+ (1 - n~]22) (JlJz + J2J~) 1 (29) 

where use has been made of Eq. (18), An equation similar to Eq. (29) can 
be obtained for species 2. Taking the trace in both sides of Eq. (29) and 
taking into account that pj + P2 = nkn T, one gets a closed equation for the 
partial pressure p~ =n~k  B T~. In dimensionless form, its solution is 

T, 1 + [(1 --/a)/2(/av + 1)] ~ ' 2a ' 2+  [(/2 + 1)/2/2v] e*2cr * 
T~* -= - -  = (30) 

T 1 + [(p + 1 )(/2v + 1 )/2/~(v + 1 )] e*za* 

where 12 = ml/m2 is the mass ratio and v =nl /n2 is the concentration ratio. 
The expression for T* can be obtained from Eq. (30) by making the 
changes # ,--,/2-~ and v ,---, v- 1. In contrast to what happens in the case of 
the reduced color conductivity coefficient, the reduced temperatures T* are 
not universal functions of the field strength. On the other hand, T* is inde- 
pendent of the force constant ratios. In the limit of small field strengths, the 
behavior of the temperature is 

T* ~ 1 - t i e * 2  (31) 

where 

]-,/31)3 "l'-/[/2V2(V "t- 2) -/2(2v + 1 ) - 1 
rt = 2/~v(pv + 1)(v+ 1) (32) 

In this small-field region, at a given value of v, T~* > 1 if/.t is smaller than 
a certain value ~'(v). For instance, /~'=2.54 and 0.39 for v=0.5 and 2, 
respectively. For large field strengths the behavior is 

v +  1 
T~* ~ - -  (33) 

v(/lv + 1 ) 
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In this region, T*  > 1 if/~ is smaller than a certain value p"(v) = v -z. Con- 
sequently, T*  is a monoton ic  function of e* if and only if, at  a given value 
of v,/~ < min{p ' , /~"} or/~ > max{#' , /~"}.  In the equimolar  case ( v =  1), the 
behavior  is always monotonic ,  since # ' = / a " =  1. Figure I shows the color 
field dependence of T*  for v = 0.5 and v = 2 and several values of#.  It is 
observed that, for the cases considered in the figure, T~ > T if n~ = �89 
whereas the opposi te  happens if n~ = 2n2. This means that  particles of the 
defect species have a larger mean kinetic energy than particles of the excess 
species. Further,  at given values of v and e*, the mean kinetic energy per 
particle of species 1 increases as the mass ratio m~/m2 decreases. In the 
limit of e* going to infinity, Eqs. (23) and (33) show that  ( v )  2 = (v  2 ) for 
each species. This means that in the limit of very large fields, the system 
behaves as a collisionless gas. Therefore, 

lim f , (v)  = Flrt~(V lim - u r ) ( 3 4 )  
le"l ~ oc 

In order to analyze the transit ion from the equilibrium distribution (with 
zero average velocity) to the f-dis t r ibut ion (34), it is instructive to consider 

T; 
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Fig. 1. Plot of the reduced temperature T *  =- T ~ / T  as a function of t: .2 for v =  n t /n  2 = 2 

(solid line) and v=0.5 (dashed line) and the following values of I . t=-mt /m2:  (a) /.t=2, (b) 
# =  1, and (c)#=0.5 .  
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the color field dependence of X ~ I - ( v ) 2 / ( v ' - ) .  In the case of species 1, 
one gets 

v + 1 a*2g .2 

x l = l - 2 v ( / ~ v + l )  T7 (35) 

The quantity Z t is plotted in Fig. 2 for the same cases as in Fig. 1. We 
observe that the species with a smaller molar  fraction tends more rapidly 
toward the &distribution as the field strength increases. 

Once p, and p_, are known, a closed equation for P, can be obtained 
by eliminating P,  between Eq. (29) and its counterpart  for species 2. The 
solution can be written as 

PI  
- -  . . P I . - )  ( 3 6 )  P * =  P * - ~  + ( P * J l -  * ~'*~"* nlkBT 

where 

X1 

Fig. 2. 
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P*.,=3T*-2P*.• (37) 

( A t ~;*4tr .3 + A 2e*2a .2 + A3g*2ff*T*'~ 
1 +Aae*2a*+AsTl*+A6 ] 

P* = (38) 
~'• 2(/~v + 1) Ave.*'~ty*2+Asg*2ty*.+A9 

[ ~ I l I I I I J I l ] l I I I 

~.~ C ~ -  

0 

[ t i i l l l t l L L L L [ I l i i  I j i i t L -  

0 2 4 6 8 tO 
.2 

Plot of the quantity X ~ I - ( v ) 2 / ( v  2) for species 1 and for the same cases as 
in Fig. 1. 
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where the coefficients At depend on the parameters characterizing the 
mixture, namely /~, v, and the force constant ratios. Their expressions are 
given in the appendix�9 The element * Pl.• of the reduced pressure tensor is 
plotted in Fig. 3 as a function of e .2 for the same cases as in the previous 
figures. We have chosen for the force constants the relationship 
Krs oc (m,.ms) 1/2, which has been proposed to model the mass dependence 
of the cross section observed in disparate-mass binary mixtures. (9~ We 
observe that, in general, P* monotonically decreases as the field strength I,.l. 

increases. However, at a given value of the concentration ratio v, there 
exists a threshold value of the mass ratio/-qh such that if # </ath, then P* l , Z  

has a maximum in the region of small field strengths. In particular, 
l~,h =0.773 for v=0 .5  and/ath =0.123 for v = 2 .  

By following the same scheme, one could get explicit expressions for 
higher-order moments. This would require the knowledge of the corre- 
sponding moments of the Boltzmann collision operator. Nevertheless, due 
to the intricacy of the algebra involved, we restrict ourselves in this paper 
to the mass and momentum fluxes. In the special case of mechanically 
equivalent particles, the total energy f luxwas explicitly evaluated in ref. 4. 
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10 

Fig. 3. Plot of P*• for the same cases as in Fig. 1. We have chosen for the force constants 
the relationship ~,, oc (mrm~) 1/2. 
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4. SOME INTERESTING LIMITING CASES 

The results derived in the previous section are general, in the sense 
that they apply to arbi trary mass, concentration,  and force constant  ratios. 
This allows us to consider some physically interesting particular cases. For  
the sake of brevity we focus here on the behavior  of the reduced tem- 
peratures T*. Further,  we shall assume that  e*:/:0. 

4.1. Equal Masses  

This is the simplest case. By subst i tut ing/a = 1 into Eq. (30), one gets 

T *  = 1 + v -  le*2tr* 
1 + e*2a * (39) 

This result was already obtained in ref. 4 in the particular case of  mechani-  
cally identical particles. Notice that  Eq. (39) applies even in the case of  
unequal force constants. 

4.2. Disparate Masses 

Let us consider now that  one of the species, say species 1, is much 
lighter than the other one, their concentrat ions being otherwise com- 
parable. Taking  the limit # ~ 0 in Eq. (30) as well as in its counterpar t  for 
species 2, one obtains 

T t*=  1 + v - l =  1/xl (40) 

T*  = 2(v + 1 )[e* -2a*  -1 + �89 - tr*)-]/~ (41) 

Thus, the heavy particles have a mean kinetic energy much less than that  
of the light particles. This is related to the fact that  both  species have the 
same mass flux, so that  the mean velocity of species 2, u2, is/~v times that  
of species 1, u l. 

4.3. Tracer Limit 

When one of the species, say species l, has a vanishing molar  fraction, 
it acts as a tracer species. Let us assume first that  the masses m~ and m2 
are comparable.  Then, taking the limit v--* 0, we get 

T * =  1 + ~ - - ~ g * - 2 0 " * - t  V -1 (42) 

T * =  1 + e*2a * (43) 
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The mean kinetic energy of the tracer particles goes to infinity, al though 
their total kinetic energy remains finite. 

4.3. 1. Lorentz  Gas. If further we assume that  the tracer particles are 
much lighter than the bath particles, we arrive at the so-called Lorentz  gas. 
The temperatures  of each species can easily be obtained by taking the limit 
v --* 0 in Eqs. (40) and (41) or, equivalently, the limit/a --. 0 in Eqs. (42) and 
(43). The result is 

Tt* = v - l (44) 

T *  = 2e* -20"* -L/~ (45) 

This means that  practically the total kinetic energy of the mixture belongs 
to the tracer species. 

4.3.2. Rayleigh Limit. Let us assume now that the tracer particles 
are much heavier than the bath particles. If, in addition, n l m t ~ n2m2, then 
the average velocity of the tracer species is much larger than that of the 
bath particles (ul ~>uz). After taking the limit /a--* or, Eqs. (42) and (43) 
become, respectively, 

T*  = (1 + 2 e * - 2 a * - l )  - '  v - t  (46) 

T2* = (1 + �89 - '  (47) 

Obviously,  the mean kinetic energy of a tracer particle is much larger than 
that  of a bath  particle, but the total kinetic energy of both  species are of 
the same order. 

4.4. B r o w n i a n  Limit  

In this limit, species 1 has a vanishing molar  fraction, is much heavier 
than species 2, and the ratio between the average velocities u~/u2 is of order 
(m2/rnl) ~/2. In our  units, the Brownian limit corresponds to v--*0,/~--* oo, 
and v2/a = const. Under  these conditions, one gets 

1 - - 0  "~ 
T* = (48) 

v2/2 

T *  = 1 (49) 

The fact that  T2* takes the value corresponding to a collisionless gas, cf. 
Eq. (33), shows that  the state of the bath particles is practically not 
disturbed by the presence of the Brownian particles. On the other hand, 
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although the mean kinetic energy of the Brownian and the bath particles 
are different, they are of the same order. 

4.5. n l  ~ nz  , m l  >> m 2 ,  n l  ma ~ n 2 m  z 

In this situation, the average velocities of both  species are comparable ,  
This case can be considered to lie in between the Rayleigh and the 
Brownian limits. Taking the limits v --, 0, p --, oo, with/av = const, one has 

18"20"*( l / / l v -  a*/(lav + 1 )) 
T~* = - 1 + �89 + 1 ) e'20- * # (50) 

1 + �89 1 + 0-*/(,uv + 1 )) 
T2* = 1 + �89 + 1 ) ~,20", (51) 

Although the mean kinetic energy of the heavy particles is much larger 
than that of the light particles, the total kinetic energies of both species are 
comparable .  

5. M A X I M U M - E N T R O P Y  M E T H O D  

Because of the mathemat ica l  complexity of the Bol tzmann equation, 
we have not been able to find a closed expression for the velocity distribu- 
tion functions in this problem. However,  as said in Section 3, the recursive 
solution of the moment  hierarchy would allow one, in principle, to obtain 
all the velocity moments .  In that case, the velocity distribution functions 
can be represented as expansions in a complete set of or thogonal  functions. 
For  instance, 

f , (v)  = fO(v) ~ k., c, ~k.,(D (52) 
k , I  

where 

f ~  = n, \2nkB TJ exp 2kB T] 

is the equilibrium distribution, 

/ n l  r "~1/2 

is the velocity relative to the equilibrium thermal velocity, and 

. I r k ,  l %  ~ k  

(53) 

(54) 

(55) 
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In Eq. (55), L~. + 1/2 are Laguerre polynomials, P~ are Legendre polynomials, 
and Nk.z are normalization constants. The coefficients C~ "~ are orthogonal 
moments of.f, .  Except for C~176 const, they are nonlinear functions of e* 
that vanish at s*=0 .  By taking moments in Eqs. (10) and (11) for the 
special case of Maxwell molecules, it is easy to check that the coefficients 
C~ "I are at least of order e .2k+1 

The moments we have explicitly derived in this paper, namely Jr 
and Pr, are directly related to the coefficients C ~ C ~ and C~ '~ It is 
clear that the knowledge of these moments does not provide a complete 
information about the distribution functions. A possible way of construct- 
ing approximate distributions consists of truncating the series (52): 

fr(V)~f~176176176176176 L~ (56) 

Although this approximation contains all the orders in the color field 
strength, it is only exact up to second order. The relevant question is 
whether Eq. (56) provides the "best" approxhnation compatible with the 
exact knowledge of the mass and momentum fluxes. According to the 
maximum-entropy method, ~~ the "less biased" distribution is the one that 
maximizes the entropy 

Sr = --kB ~ dv fr(V)In fr(v) (57) 

subject to the constraints given by Eqs. (13)-(15). The result is 

frME(v)=nrrt-3/2(detF,) ' /~expI--F,:(v--Jr~(v--~) (58) 

where 

rr=-~p, P , -  j,.j, (59) 

0 "~ 1,0 Obviously, the coefficients C ~ Cr,, ' and C r in the expansion of fME in 
terms of the complete set {~gk.~} coincide with the exact ones. Conse- 
quently, the maximum-entropy distribution is exact up to second order in 
the color field, as happens with the approximation (56). However, in 
contrast to Eq. (58), the approximation (56) is not a positive-definite 
function for arbitrary values of the field strength. 

It is interesting to notice that Eq. (58) satisfies the exact property (34). 
As a consequence, the maximum-entropy distribution becomes exact in the 
limits of small and large color fields. Thus, one can expect that Eq. (58) 
provides a reasonably good estimate of the actual distribution function for 

822/75/5-6-3 
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arbitrary values of the color field. By inserting Eq. (58) into Eq. (57), one 
gets an upper estimate of the entropy. The result for species 1 is 

s M E = s ~  (P*.i ,.t, 2 p n,e*2a*2 (60) 

where S O is the equilibrium entropy. In the limit of small e*, one has 

= s ~  

~nlkB 

~- ~+2 p 

pvZ(p + I) + gv- 1 
= 8 *  2 

2t~v(v + 1 ) 
(61) 

where in the last step use has been made of Eq. (32). This behavior coin- 
cides exactly with that of the actual entropy for species 1. It is instructive 
to realize that AS* can be positive if zt is (sufficiently) negative, i.e., if Tt 

0.5 

0.0 

As; -o.5  

-1.0 

-1.5 

-2.0 

i , i i I , i i i I I i I I [ I I I I I I I I I 

C 

b 

C 

--~.5 I I I I I I I I t I I I t I I I I I I I j j i i 

0 2 4 6 8 I0  
*2 

F i g .  4 .  P l o t  o f  t h e  r e d u c e d  e x c e s s  e n t r o p y  A S *  o b t a i n e d  f r o m  t h e  m a x i m u m - e n t r o p y  m e t h o d  

f o r  t h e  s a m e  c a s e s  a s  i n  F i g .  3 .  
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is (sufficiently) larger than T. Of course, this does not violate the second 
law of thermodynamics, since the total  entropy behave as 

S = $1 + $2 ,~ S o - 3 n k . ~ * z  (62) 

Figure 4 shows zlS* for the same cases as in the previous figures. In agree- 
ment with Eq. (61), AS* is positive in the small-color-field region for the 
case ~ = 0.5, v = 0.5. Except in that region, the entropy always decreases 
with the color field. Notice that A S *  is practically the same in the cases 
/~=2, v=0 .5  and/~=0.5 ,  v = 2 .  

6. D I S C U S S I O N  

In this paper, we have studied the nonlinear mass and momentum 
transport across a binary mixture of mechanically different Maxwell 
molecules in the low-density regime. The system is driven to a non- 
equilibrium homogeneous steady state by the action of an external "color" 
force that creates mutual diffusion in the absence of concentration 
gradients. The main transport coefficient is the color conductivity coef- 
ficient, which is defined as the ratio between the mass flux and the color 
field strength. This method to produce diffusion has been proposed in 
molecular dynamics simulations as a means to evaluate the mutual diffu- 
sion coefficient in the zero-field limit. Nevertheless, we have gone beyond 
the linear limit to analyze the nonlinear response of the system to arbitrary 
values of the field. 

It must be emphasized that no approximations have been considered, 
except the restriction to the Maxwell interaction. In that case, the infinite 
hierarchy of moment  equations for the color conductivity problem can be 
recursively solved in an exact way. We have explicitly obtained the color 
conductivity coefficient and the pressure tensor for each species as func- 
tions of the color field, the molar fractions, the particle masses, and the 
interaction constants. The generality of the results allows one to specialize 
to some physically interesting limit cases, such as the Lorentz gas, the 
Rayleigh gas, or the Brownian motion. 

One of the outcomes of our solution is that the reduced color con- 
ductivity coefficient is a function of the reduced field strength, which 
is independent of the characteristic parameters of the mixture. This 
"universal" character disappears when one considers higher-order moments. 
In particular, the reduced temperature of each species depends on the 
concentration and the mass ratios. As functions of the field strength, the 
temperatures exhibit monotonic or nonmonotonic behaviors, depending on 
the values of the concentration and the mass ratios. In addition to the 
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previous parameters, the normal stresses also depend on the values of the 
interaction constants. In the limit of large color fields, the system behaves 
as a collisionless gas, so that the velocity distribution functions become 
&distributions. 

Since we have not been able to find an explicit exact expression for the 
distribution functions, we have resorted to the maximum-entropy method 
for constructing approximate distributions consistent with the exact mass 
and momentum fluxes. These maximum-entropy functions are exact up to 
second order in the color field, as well as in the large-field. The corresponding 
entropies are upper bounds of the exact ones and are expected to give a fair 
picture of their real behavior for arbitrary values of the field strength. In 
order to test the reliability of the maximum-entropy method in this 
problem, it would be interesting to perform numerical simulations of the 
Boltzmann equation. 

The problem we have analyzed in this paper can be considered as a 
rather academic one. Nevertheless, we think that the results reported here 
are a first step toward the understanding of nonlinear electrical conduc- 
tivity in a Coulombic system at low density. "1'  We plan to explore the 
possibility of interpreting the color charge as an electrical charge and intro- 
ducing the Coulombic interaction in a perturbation way. 

APPENDIX  

In this appendix we list the expressions for the coefficients A i appearing 
in Eq. (38). They are 

A , =  - ? , 2 [ ~ ( 7 1 , - 2 ) + 7 1 1 ] ( ~ v +  1)(v+ I) 

A 2 ---- - - / l  { v[/22?22(2712 --  1 ) + #(711 - -4t '12)  + 2711712] 

+ /~722(711--2)+7I~722}( v +  1) 

A3=2712{v[/.~(71,- 1 ) + ? , , ]  + 1}(~v+ 1) 2 

A4=21#12[v3p2+v21~(~+2)+v(211+ 1)+ 1] 

A 5 = 2/~(/~v + 1 ){ v2 [ / j ( ? l ,  - 27,2) + 2y11 ?,2] 

+ v [I~722(? 11 -- 2? 12) + ? 11722 + 2? ,2 ] + 7"-2 } 

A 6 = 4p2? 12(/Iv + 1 )(v + 722)(V -1- 1 ) 

A7=?12( /2  + 1)(/iv + I )  2 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 
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A8 = ? ~2(/~v + 1 ){ v[/~ 2 + / ~ ( ~ , ,  + 27~2) + y,, ] 

']- /-22?22 -}- ~(2712 -}- ?22) "~ 1 } (A8) 

X9=It[V2?ll(l~+2yj2)+V(yllY22+2712)(l~+ 1) +722(2tt?~2 + 1)] (A9) 

In these equations, ?1, - 2'11/2'12, 2;22 - 222/2'i2, and ?12 = 2,2/2'12 = 0.648. 
The parameters y~ and Yz2 depend on the force constant ratios K,~/tCl2 
and K22/K,2, respectively. With the choice Xrs OC (mrms) u2, one gets ?it = 
/.t-~/4[(1 +/~)/2] m and y22 =/~-3/4[(1 +U) /2 ]  ~/2. 

According to Eq. (38), the behaviors of P* in the limits of small and .1,3_ 
large  field strengths are, respectively, 

P* ~1-(A-~99 A 2 + A 3 + A 4 - A s z t ) ~ . 2  (A10) 
J.• A s + A 6 

* 2 A ' + A 3 [ ( v + l ) / v ( l a v + l ) ] + A 4 1 e * [ - '  ( A l l )  
P l . l  ~ 

2~ / ' 2 (#v+  l )A7  

In Eq. (A10), z I is given by Eq. (32). 

A C K N O W L E D G M E N T S  

We are grateful to Prof. J. J. Brey for enlightening discussions about  
the subject of this work. This research has been partially supported by the 
Direcci6n General de Investigaci6n Cientifica y T6cnica (Spain) through 
grant no. PB91-0316. The research of C.M. has been supported by a 
predoctoral  fellowship from the Ministerio de Educaci6n y Ciencia (Spain). 

R E F E R E N C E S  

1. D. J. Evans, W. G. Hoover, B. Failor, B. Moran, and A. J. C. Ladd, Phys. Rev. A 28:1016 
(1983). 

2. P. T. Cummings, B. Y. Wang, D. J. Evans, and K. J. Fraser, J. Chem. Phys. 94:2149 
(1991). 

3. D. J. Evans and P. T. Cummings, Mol. Phys. 72:893 (1991); S. Sarman and D. J. Evans, 
Phys. Rev. A 45:9370 (1992). 

4. V. Garz6 and A. Santos, J. Star. Phys. 65:747 (1991). 
5. S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (North-Holland, 

Amsterdam, 1962). 
6. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases 

(Cambridge University Press, Cambridge, 1970). 



816 Marin e t  al.  

7. L. H. Holway, Phys. Fluids 9:1658 (1966); E. Goldman and L. Sirovich, Phys. Fluids 
10:1928 (1967). 

8. D. J. Evans, R. M. Lynden-Bell, and G. P. Morriss, Mol. Phys. 67:209 (1989). 
9. E. A. Johnson, Phys. Fluids 21:1239 (1978). 

10. B. Buck and V. A. Macaulay, eds., Maximum Entropy in Action (Clarendon Press, Oxford, 
1991). 

11. [. M. Svishchev and P. G. Kusalik, Physica A 192:628 (1993). 


